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ABSTRACT

This paper identifies, by means of video and Kinect data, a
set of predictors that estimate the presentation skills of 448
individual students. Two evaluation criteria were predicted:
eye contact and posture and body language. Machine-learning
evaluations resulted in models that predicted the perfor-
mance level (good or poor) of the presenters with 68% and
63% of correctly classified instances, for eye contact and pos-
tures and body language criteria, respectively. Furthermore,
the results suggest that certain features, such as arms move-
ment and smoothness, provide high significance on predict-
ing the level of development for presentation skills. The
paper finishes with conclusions and related ideas for future
work.

Categories and Subject Descriptors

1.5.3 [Pattern Recognition]: Design Methodology— Fea-
ture evaluation and selection, Pattern analysis

General Terms

Human Factors, Measurement
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1. INTRODUCTION

Currently, most universities around the world face the
challenge of demonstrating the quality of their graduates
and whether or not they fulfill the so called twenty-first
Century competences. As indicated by [23], these compe-
tences are related, among others, to interpersonal skills that
comprehend abilities to communicate and collaborate.

Communicating or doing presentations to a variety of au-
diences is one of the professional competences sought cur-
rently by business and industries; professional organizations
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and undergraduate program accreditation agencies (See [1],
[11]). Instructors and students work hard to get evidence
that demonstrate students reach a desired level of effective
communication. Evidences are constructed mostly in the
interactions that take place during class time, practice ses-
sions, etc. Precisely, these interactions are used by instruc-
tors to measure, assess and give on-time feedback about the
development of such competences. However, this process is
a time-demanding and complex task that needs dedication
and experience on the instructor side. For instance, when
instructors assess presentations, they need to be alert about
several verbal and non-verbal signals that happen in parallel,
including: message clarity, expressiveness quality, gaze con-
nection to the audience, hands and arms gestures, postures
shifts, etc. [28]. The use of automated ways to keep up with
this process, from the instructor perspective, is desirable.

In this sense, Multimodal learning analytics (MLA) is a
promising area that builds upon the analysis of a combined
variety of data sources, captured during learning interactions
in similar settings as the one described above. Current mul-
timedia processing technologies and machine learning tech-
niques have progressed to a point where readily available
algorithms can be used to process videos, audios, and other
digital material; and produce rich features such as postures,
gestures, skeletal models that are further used to support
multimodal learning analytics. The efforts in researching in
this area are still limited, mainly due to the fact that is a
nascent intricate area; some examples of these efforts are the
ones presented in [4] [29] [9].

This paper describes the use of existing multimedia pro-
cessing technologies to produce a set of features from the
multimodal dataset of students’ recordings while doing pre-
sentations, provided by the Presentation Quality Challenge
of MLA 2014. Given the complexity of the challenge, the pa-
per uses only the video and Kinect media features to answer
the following research question: which non-verbal character-
istics of students are predictors of their level of skill devel-
opment when doing presentations?

The paper is structured as follows: Section 2 presents
work related to the extraction of non-verbal characteristics
that are useful for this work; section 3 describes the multi-
modal dataset, the extracted features, algorithms and soft-
ware used for the analysis. Section 4, presents the techniques
used for classification and estimation of the level of develop-
ment of presentation skills. Section 5 discusses the findings
of previous section and section 6 presents the general con-
clusions of the work presented.



2. RELATED WORK

Good communicators demonstrate their presentations skills
by means of their verbal characteristics but also through
their non-verbal characteristics, like body language, eye con-
tact with the audience, or even the space the presenter occu-
pies on the stage [30]. These characteristics are perceived as
important as what it is literally transmitted when speaking
to an audience [10]. Most of the research related to non-
verbal characteristics of people is associated to emotion and
affective studies to mimic movements in robots or to create
fluent interactions with alike systems. The understanding
of such characteristics is a key element for automatic detec-
tion systems [26], where especial emphasis is put into spatio-
temporal movement properties, such as the general energy
shown, rate of movement or how much an expositor is pleas-
ant or not during a presentation [8]. The spatial aspects of
movement imply measuring the joint to joint distance by us-
ing a local coordinate system [2]. Other researchers [16] [5]
analyze the power and fluency of an expositor by consider-
ing the temporal aspects during her/his presentation. These
analyses are based on extracting cues like velocity and accel-
eration for each joint with respect to a common origin joint.
Additionally, [21] propose a feature analysis based on spher-
ical angles and angular velocities for human reconstruction
poses and action recognition. In [7], authors explain the
characteristics describing a poor and good performance of
presenters, e.g. moving around too much, open body pos-
ture, etc.

A more qualitative analysis approach is the one followed
by [18] [12], which base their research on Laban’s theory
explaining that there is a relationship between boundaries
of the space occupied by a presenter and her/his personal-
ity while giving a speech. For instance, shyness could be
described as a repetitive shrink of the space occupied by
the presenter’s body. The contraction and expansion of this
space is called contraction index [12] which is measured by
calculating the eccentricity of the ellipse formed by the head,
spine and hands. A presenter’s gestures could describe a de-
gree of eccentricity drawn from the body bounds. The work
presented in [25] describes a framework for expressive ges-
ture quality analysis of humans using different dimensions
such spatial aspects of movement, fluency, overall activity,
smoothness, etc. These dimensions are used by a virtual
agent that mimics how humans behave. They also men-
tioned that these characteristics were calculated using the
Microsoft Kinect data. In [19], it is proposed a framework
for capturing manually different features based on 3D points
and Kinect skeleton data from one-minute presentations of
32 presenters. The features used in this study correspond
to the angles comprised between upper body joints from
Kinect data and Laban Space features. Additionally, they
tagged manually all postures using the evaluation of an ex-
pert trainer.

Works related to capturing features that automatically
describe the postures and gestures that differentiate skilled
presenters are scarce. Most of the research have been con-
ducted to classify pre-defined postures [13] or by tagging
manually such postures [3] in different contexts.

This work combines the several features mentioned above
for estimating presentation skills with a multimodal approach
for the analysis. Current literature addressing this type of
analysis has not been found in relation to the research ques-
tion to be answered.

3. DATASET

This dataset includes 448 individual oral presentations of
undergraduate students and their corresponding video and
Kinect records. In addition, a human-coded information
evaluating each presentation is provided. The following ten
evaluation criteria were used in the human evaluation: voice
volume, good pronunciation, structure and idea connections,
appropriate language for the audience, visual design of slide
presentations, slide readability and grammar, enthusiasm
and self-confidence, postures and body language; and eye
contact. The scores for each criterion go from 1 (low) to
4 (high). In this paper, the two last criteria were used as
variables to be predicted using machine learning techniques.

In the following subsections a match between criterion to
be predicted and techniques to extract features related to
such criterion is presented.

4. EXTRACTED FEATURES

In order to obtain the features that were used to predict
the quality of the oral presentations, each input data (video
and Kinect) was analyzed. This section describes these fea-
tures and the procedure used to extract them. Following,
the set non-verbal characteristics measured from the set the
videos and through the Kinect sensor.

4.1 Video features

Given the importance of eye contact as a criterion used in
the human evaluation provided in the dataset, basic eye con-
tact features were extracted from the videos. Luxand [15]
was used as a solution to recognize faces and to detect fea-
tures. This solution returns coordinates of 66 facial feature
points including both eyes center and nose tip. The facial
points extracted were used to estimate the presenter’s gaze.
This estimation considers the smallest distance from each
eye center points to the nose tip point; thus, if the distance
from the right eye center to nose tip is smaller than the
distance from the left eye center to nose tip, then it is in-
ferred that the presenter is watching to the right side of the
audience. However, identifying a centered vision does not
mean an equal distance from any eye center to the nose tip.
Therefore, a range was set to delimit a maximum displace-
ment from perfect centered gaze, and to distinguish among
other possible sides.

Using these conditions, the estimation of presenter’s gaze
is calculated as the average for each of the three horizon-
tal face displacements: center (C), right (R) and left (L).
Additionally, some descriptive values were computed such
as maximum (MAX), minimum (MIN) and average (AVG)
of such displacements. A total of nine features were cal-
culated using these video sources and they were named us-
ing the descriptive acronyms plus H, plus the acronym for
the face displacement (e.g. head center: MAXHC, MINHC,
AVGHC).

4.2 Kinect features

The extraction feature procedure from Kinect data fol-
lowed two approaches to represent the posture and body
language of presenters. The first approach focused on iden-
tifying the common postures appearing in the set of presen-
tations provided. The second approach, echoed the work
of [25], which extracted some features from the body joints
of Kinect skeleton, based on Laban’s theory measures (e.g.



spatial aspects of movement, temporal aspects of movement,
fluency, etc.). In addition, shape-invariant time-scale fea-
tures were also extracted following similar procedures as
in [21].

4.2.1 Common Postures

In the context of this work, common postures of presen-
ters were identified by using a classification method that em-
ployed fuzzy C-Means [14] for the extraction of prototypes
and their further clusterization with the K-Means algorithm.
The prototype, a generalization of a posture per person, used
only the upper body of Kinect joint positions: right and left
elbow; right and left wrist; right, center and left shoulder;
spine; and, head. Additionally, only tracked positions from
Kinect were used to avoid the generation of unusual postures
or noise for the final classification. All skeleton joints were
referenced to the spine joint to eliminate the spatial move-
ment given by the local position of the Kinect camera and
the presenter. Then, for each individual Kinect recording,
all X and Y points were converted to a coordinate system
based on the spine joint as the origin. It was not necessary
to normalize the data because the prototypes were extracted
for the presenter itself.

After processing the Kinect recordings, a fuzzy C-Means
(FCM) algorithm with highest membership categorization
was used to build prototypes and to extract five different
postures per student. Five prototypes were enough to de-
scribe comprehensively the majority of postures each per-
son in the dataset showed during a presentation. After
applying the FCM, all the prototypes from all presenters
were clustered using K-Means. A normalization over the
data was accomplished by extracting the angles of the tri-
angles per limb, which is composed by the arm joints (shoul-
der, elbow and wrist), and the limb orientation towards
the shoulder. The relative data was used in each proto-
type and a new feature vector, representing each proto-
type, was calculated. The definition of the vector X =
(ar,Br,vL,ar, Br,Yr,OL,ORr) is defined as follows:

e «y is the angle between the vectors defined from: the
wrist to the shoulder, and the shoulder to the elbow in
the left arm.

e (31, is the angle between the vectors defined from: the
shoulder to the elbow, and the elbow to the wrist in
the left arm.

e 7 is the angle between the vectors defined from: the
elbow to the wrist and the wrist and the shoulder in
the left hand.

e «ap is the angle between the vectors defined from: the
hand to the shoulder, and the shoulder to the elbow in
the right arm.

e [r is the angle between the vectors defined from: the
shoulder to the elbow, and the elbow to the wrist in
the right arm.

e g is the angle between the vectors defined from: the
elbow to the wrist and the wrist and the shoulder in
the right wrist.

e Oy is the left arm orientation reference to the shoulder.
It takes a value of one if it is located above of the
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reference and a minus one value, if it is located below
of the reference.

e Oris the right arm orientation reference to the shoul-
der. The assignation of values for Og follows the same
logic as in Op,.

The K-Means clusterization results in 24 postures and its
corresponding centroids. The 24 postures were reduced to
six postures after analyzing the actual postures appearing
in the videos. The six postures that were finally used are
listed below:

e arms down (AD)

e explaining with closed hands (EXPCH)

e pointing to presentation with one hand (PTPONEH)
e explaining with hands slightly separated (EXPHSS)
e explaining with one arm up (EXPONEAUP)

e pointing to presentation with two arms (PTPTWOA).

Each frame was classified according to this new set of pos-
tures and the percentage of each posture per student was
calculated. Figures 1, 2 and 3 show video frames and its
corresponding categorization.

0 .E!]-r 3

Figure 1: Video frame categorized as C11 after K-Means was
performed. The final classification is pointing to presen-
tation with one hand.

C15

—2

-4

Figure 2: Video frame categorized as C15 after K-Means
was performed. The final classification is explaining with
hands slightly separated.

4.2.2  Extracted features based on Laban’s Theory
and shape-invariant time-scale

For the following features, the upper body set of 9 joints
from Kinect records were used. These joints are both wrists,
elbows, shoulders; and, hip center, spine, and shoulder cen-
ter. For accuracy purposes, wrist features were used instead
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Figure 3: Video frame categorized as C23 after K-Means
was performed. The final classification is explaining with
closed hands.

of hand features because the former were easily tracked.
However, in the rest of the paper wrist features will be re-
ferred as hand features.

The following non-verbal characteristics were used in the
feature extraction: spatial aspects of movement; temporal
aspects of movement; fluency, smoothness and impulsivity;
energy and power and overall activity. The detailed de-
scription of each characteristic and its associated extracting
technique are described below. From this point on, the ex-
tracted features referring to limbs are named as right (R)
or left (L); likewise, descriptive values for the measures of
non-verbal characteristics such as standard deviation (STD),
maximum (MAX), minimum (MIN), average (AVG) and
skewness (SK) are used as prefixes of the calculated mea-
sures.

Spatial aspects of movement.

This set of features is calculated considering a local system
of coordinates, centered at the spine joint per frame. From
this joint the Euclidean distances (D) between each hand (H)
and elbow (E) were computed, as in [6], resulting for instance
in MAXLHD (Maximum Euclidean distance between left
hand and spine). Similarly, descriptive values of distances
between hands are calculated (i.e. MAXD2H,SKD2H) as in
[2] and the average of frames where open (O) or closed (C)
hands were computed using as reference a fixed threshold
(AVGOH, AVGCH).

Finally, a contraction index (CI) [12], explained at sec-
tion 2 and its descriptive values are calculated (i.e. AVGCI,
MAXCI, etc.).

Temporal aspects of movement.

Another set of features is based on the movement execu-
tion along the time, suggesting the sense of power during a
presentation [16]. Consequently, the first derivative of the
distance from a common origin (spine joint) up to left and
right wrist and elbow joints was calculated, resulting in the
velocity (V) from consecutive frames (i.e. MAXRHV stands
for the maximum right hand velocity).

Fluency, smoothness and impulsivity.

According to [6], fluency was measured by obtaining the
sum of variance (SV) of the norms of the motion vectors.
A motion vector is estimated by obtaining the norm of the
average velocity per joint and per second. According to
[18] the following features that are also related to fluency
were computed: the area covered by presenter’s hands, for
one (1F) and fifteen (15F) frames as window sample size
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(e.g. AVGIF, MAXGIF, etc.). Additionally, the majority
(MJ) of area values that lies out of a confidence interval
for each sampling window were calculated (e.g. MJ15F).
Finally, smoothness (SMTH) and impulsivity (IMP), which
correlate to slow and fast wrists movements during a short
period, respectively, were calculated as described in [17].

Energy and power.

Following the methodology described in [2], energy and
power, from body movement, were estimated by calculating
the second derivative of distance with respect to left and
right hand and elbow joints. The average, maximum and
minimum acceleration (A) were obtained from these joints
(i.e. MAXRHA stands for maximum right hand accelera-
tion).

Overall activity.

As described in [6], the overall activity is a characteristic
that was measured by following two calculations. The first
one calculates the sum of motion vectors (SMV). The second
one calculates the quantity of motion by taking the average
of the motion vectors (i.e. AVGMYV relates the average of
the norm of the motion vectors).

Shape-invariant time-scale features.

As stated by [21], original positions (x,y,z coordinates) of
joints can be converted into spherical coordinates, resulting
in shape-invariant time-scale data. This conversion is use-
ful to avoid differences related to individual height of the
presenter. Thus, hand and elbow joints were converted into
spherical angles (¢ and ) to denote spherical positions. The
angular velocity (¢., and 6.,) was also calculated to consider
the movement over the time of such angles. For instance,
the minimum angle of the left elbow is referred as MINLE®
and its angular velocity as MINLE@,,.

5. EVALUATION AND RESULTS
5.1 Evaluation methodology

This section presents the evaluation of the applied ma-
chine learning techniques used for calculating the predic-
tors scores features obtained with the evaluation criteria de-
scribed in section 4. A basic setup was established previous
to the evaluation procedure, which consist of the following
steps: data normalization, feature selection, and classifica-
tion using a machine learning technique that better fits the
data. The classification uses a training set sample and ulti-
mately a classification report is generated from a predicted
set of values using a sample test set. The basic setup pro-
cedure was carried out using Python and the Scikit-learn
library [22].

In the context of this work, the feature selection was ap-
plied by using a recursive feature elimination (RFE) via
cross-validation, accuracy scores and a weighted logistic re-
gression classifier. This specific setup was chosen after eval-
uating alternate setups and its results. Once the ranking
of features was returned by RFE, a selected set of features
were used for training the classifier using cross validation.
The predicted values were matched with the ground truth
building the confusion matrix and generating values such as
average accuracy, precision, recall and the Receiver Operat-
ing Characteristic (ROC) value from confusion matrix.



Two evaluation approaches were conducted in this part of
the study. The first approach analyzed the video features us-
ing the eye contact criterion (EC) and the second approach
analyzed the Kinect features using the body language crite-
rion (PBL). Both EC and PBL are evaluation criteria used
by human coders. Table 1 shows the data source and the
human coded criterion for the evaluation approaches.

The scores obtained using human coded criterion EC and
PBL, were converted into a nominal scale with two possible
classes: Poor and good application of both criterion. The
class values and range of the original scores for each criterion
are also presented in Table 1.

Data Human coded Range of
- Class
source criterion values
. Poor 0<x <267
Video Eye Contact (EC) Good [267 <z <4
Kinect Body and Posture | Poor l1<z<3
Language (BPL) | Good 3<zr<4

Table 1: Evaluation Approaches with their corresponding data
source, initial number of features, related criterion, class and

range of values per class.

5.2 Results
5.2.1 Video features approach

Following the setup previously explained, the video fea-
tures were normalized and then the RFE was performed
using the accuracy as key point for recursive elimination,
five-fold cross-validation and a weighted logistic regression
classifier. The RFE resulted in the selection of nine features.

Next, a weighted logistic regression classifier was trained
and tested using ten-fold cross-validation, resulting in a built
classifier with a general accuracy of 0.68 and a ROC score
of 0.65. Table 2 shows the nine most relevant features for
predicting EC. Note that AVGHL (Average of presenter’s
head pointing to the left side) has the highest coefficient
for the logistic decision function. In addition, as can be
noted in Table 5, 61% of the cases that fall in the poor class
are correctly classified, whereas, 68% of the good cases are
classified accordingly.

Rank | Feature | Coefficient
1 | AVGHL 150.73
2 | MINHL 18.70
3 | MINHC 16.04
4 | MINHR 4.73
5| AVGHC 3.84
6 | MAXHR 1.57
7 | MAXHL -5.44
8 | MAXHC -5.57
9 | AVGHR -50.12

Table 2: Video ranking coefficients of the features in the
logistic regression decision function.

5.2.2 Kinect features approach

115 features from Kinect were used to perform the RFE, a
similar process as described in the first evaluation approach
was followed. The results of RFE did not show relevant
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features for the classification procedure. Therefore, another
well-known procedure for selecting features is based on the
Information Gain. Then, a tree classifier was built and the
gain information for each feature was calculated. Features
with an information gain higher than 0.0087 were selected.
Table 3 shows the joint types, measures obtained from re-
lated joints and the name of selected features according to
the description in section 4.2 . From this table, it is evi-
dent that most of the average related and spherical angles
features were selected.

The feature space was reduced to 53 and a weighted lo-
gistic regression classifier was built upon these selected fea-
tures. After training and testing the classifier using ten-fold
cross-validation, the general accuracy resulting was 0.63 and
a ROC score of 0.62. Note that in Table 4 the highest coef-
ficient appearing in this table, for the logistic regression de-
cision function, corresponds to the average right hand theta
angle (AVGRH6) and the minimum is related to the aver-
age right hand acceleration (AVGRHA). Table 5 shows the
precision and recall for this classifier per category. Results
indicate that, for this case, the percentage of correct classi-
fication for the poor category increased, and it decreased for
the good category.

6. DISCUSSION

Results presented in previous section showed the existence
of good predictors for grading a presenters’ performance,
according to eye contact and body posture language scores,
assigned by experts.

6.1 Eye contact

Even though the gaze related features were calculated us-
ing simple techniques, the accuracy reached in the model is
in a good level of acceptance.

These results show that the feature AVGHL, average of
presenter’s head pointing to the left side, was the best pre-
dictor for a good performance class. This can be explained
with a brief inspection into the video dataset, which reveals
that most (56%) of the presenters were located at the left
hand side of the slide presentation, meaning that she or he
needed to gaze to the left side of the audience.

In contrast, the average of presenter’s head pointing to the
right side (AVGHR) was the worst predictor for the good
performance class. It can be observed in table 2 that this
feature has a negative coefficient. This behavior may be at-
tributed to the presenter’s position. That is, if the presenter
turns her or his head to the right side, where it is supposed
there is no audience, the AVGHR value would increase, then
a poor performance would be predicted.

One would expect that a combined balance between the
three head positions (Left, center, right) would be relevant,
for maintaining good eye contact with the audience. How-
ever, results do not correspond to this expectation. The pre-
diction model in this study is limited by the way the videos
were captured. For example, the position of the teacher in
the classroom was not provided in the dataset and the video
setting, while capturing the data, was not always the same.
Therefore, these aspects should be considered when gath-
ering video data for building prediction models as the one
portrayed in this article.



Joint types Measures Selected features
6 and 0 MINLH¢, AVGLH¢, MAXLHo,
loft hand . and 0 AVGLH, STDLHO, MAXLHS,
« « AVGLH¢.,, MAXLHE,,
velocity and acceleration AVGLHV, AVGLHA
 and 0 AVGRH¢, STDRH¢, MAXRH¢,
right hand ., and 0 AVGRHO, AVGRH¢,,, STDRHE,,,
« @ MAXRHS.,,
velocity and acceleration MAXRHV, AVGRHA, MAXRHA
5 and MINLE®, AVGLE¢, MAXLE®,
loft elbow ., and 0 STDLES, MAXLE6, MINLES,
w w AVGRE¢.,, STDLE(.,, MAXLE(,,
velocity AVGLEV
6 and 0 MINRE¢, AVGRE¢, MAXREg,
right elbow ., and 0 MINRE®, AVGREA, AVGRE¢.,,
« @ MAXRE¢,, MINRESA,,, STDRES,,
acceleration AVGREA
. distance between two hands SKD2H, AVGOH, AVGCH
left hand, right hand Smoothnoss SNVTH
head, left hand, right hand | area covered by hands AVGI1F, STD1F, AVG15F, STD15F
upper body Rigid stance, Open body posture, = |y pppONEH EXPONEAUP, PTPTWOA
Hand/arm gestures to emphasize point

Table 3: Selected features after performing the Information Gain feature selection from Kinect dataset to predict body and

posture language criterion.

6.2 Body and Posture Language

The classification procedure revealed, as it is shown in ta-
ble 3, that the shape-invariant time-scale features are good

Table 4: Top ten Kinect ranking coefficients of the features
in the logistic regression decision function for predicting bod

Table 5: Summary of the results per evaluation approach.
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Rank Feature Coefficient predictors for the classifier. Moreover, in table 4 these fea-
1 | AVGRHE 338.27 tures occupy nine of the top ten ranking coefficients that
2 | STDLE# 207.74 predict body and posture language. Thereby, using spheri-
3 | MAXLES,, 105.63 cal angles to give a better precision of the data, before ap-
4 | MAXLE 0 92.52 plying any mathematical formulation, was a good strategy
5 | STDRLO R4.46 to overcome issues related to the height of presenters.

6 | MAXLEo S3.67 Similarly, the average of open and closed hands (AVGOH,
7 | MINRE® 7371 AVGCH), the skewness between two hands (SKD2H), and
S [ MAXRE¢, 6117 the area covered by hands (AVG1F, AVG15F) were signifi-
9 [ MINLH® 61.86 cant predictors of the model. These predictors could be re-
10 [ AVCRHA 5144 lated to an adequate movement of hands; thus, they might
- be perceived by humans as good indicators of PBL. These

findings go in line with [7], which stated that some affective
postures, where upper limbs appear, are perceived as pos-
itive when communicating with other people. Conversely,
static body postures are linked to negative basic emotions,
such as sadness or anger, apparently regardless of the cul-
tural context (See [20]

Interestingly, the smoothness of the presenter’s movements
(SMTH) was also a predictor in the classifier. This could be
interpreted as if a presenter makes abrupt movements or
moves around rigidly, it might be perceived as an undesir-

Class | Precision | Recall | Examples able characteristic during a presentation. In [27] [16] [5] [24]

Video | Poor 0.48 0.61 147 smoothness was identified as a good characteristic of per-

features | Good 0.78 0.68 301 formance scoring while dancing or for sentiment detection;

Kinect | Poor 0.66 0.70 260 however, no studies were found, where such feature is related
features | Good 055 050 1S3 to good presentation skills.

Moreover, the features extracted from common postures
such as arms down (AD), pointing to presentation with one
hand (PTPOH), explaining with one hand up (EXPONEAUP)
and pointing to presentation with two arms (PTPTWOA)
were also selected as predictor characteristics, which agree
with the study of [7], where certain set of postures for pre-



sentations were identified. There were missing postures like
explaining with hands slightly separated (EXPHSS) and ex-
plaining with closed hands (EXPCH) that were not selected
as predictors of the model. Future work could analyze in-
dividually each of the six extracted postures to study their
relation to good or bad presentation skills.

Finally, other set of features that were likely to relate to
presentation skills, such as those linked to the overall activity
characteristic, were less informative for the purpose of this
research.

7. CONCLUSIONS

This paper aimed to answer the following question: which
non-verbal characteristics of students are good predictors of
their level of development of presentation skills?

It can be concluded that the measures related to eye con-
tact; arm movement; smoothness and fluency in the stage,
while communicating; and, a set of body postures that helps
emphasizing points, of what it is uttered, are good estima-
tors of level of development in presentations skills.

Nevertheless, if other dataset were used, as source, to cre-
ate a similar model, additional predictors might appear. Es-
pecially if other video sources like eye tracking is included in
the analysis. Additionally, a fixed setting for recording the
presentations could improve the accuracy of the predicted
models.

As a contribution from this study, analyzing each presen-
ter created a category of common postures. Such categories
could leave an open door for this research area due to the
lack of defined postures for presentations. An improvement
in the methodology for creating these categories would be
the use of shape-invariant time-scale features before the clus-
terization (spherical angles of points). The use of these new
space and dimension could generalize, in a better way, the
categories.

Further research could improve the prediction of presen-
ter’s performance by matching the posture with the presen-
ter’s speech and the content of the slide presentation.

As a final conclusion, the results of this work could be
used to improve the performance of automatic estimation
tools. These tools could provide feedback to the students
beforehand their actual presentations, as well as to alleviate
the load on the side of instructors when assessing them.
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